Design and realization of high-performance and robust fractional order controllers: An application for automotive systems

Guido Maione

Department of Electrical and Information Engineering

Politecnico di Bari

Bari, Italy

Research Seminar

Belfast, November 20, 2013
Outline

1. Historical Introduction
2. Background
3. An automotive application
4. Design
5. Tests

G. Maione
FOC for common rail pressure regulation in CNG engines
Leibniz (1646-1716) introduced the symbolic computation $d^n y / dx^n = D^n y$, where n is a non-negative integer.

In a letter to marquis de L'Hôpital (1661-1704), Leibniz raised the following question:

"Can the meaning of derivatives with integer order be generalized to derivatives with non-integer orders?"

L'Hôpital was curious about this and replied by another question to Leibniz: "What if the order will be 1/2?"

Leibniz in a letter dated September 30, 1695 replied: "It will lead to a paradox, from which one day useful consequences will be drawn."
Euler (1707-1783) observed that the result of the evaluation of $d^n y/dx^n$ of the power function x^p has a meaning for non-integer p.

Laplace (1749-1827) proposed the idea of differentiation of non-integer order for functions representable by an integral $\int T(t)t^{-x}dt$.

Fourier (1768-1830) suggested the idea of using his integral representation of $f(x)$ to define the derivative for non-integer order.

Abel (1802-1829) wrote very important papers.
Mathematical important contributions: R-L

Riemann (1809-1882), left, contributed for fractional derivative and Liouville (1826-1866), right, for fractional integral of order $\nu \in \mathbb{R}, \nu > 0$

$$aI_t^\nu f(t) = \frac{1}{\Gamma(\nu)} \int_a^t \frac{f(\tau)}{(t-\tau)^{1-\nu}} d\tau \Leftrightarrow \frac{F(s)}{s^\nu}$$

$$aD_t^\nu f(t) = \frac{1}{\Gamma(n-\nu)} \left(\frac{d}{dt} \right)^n \int_a^t \frac{f(\tau)}{(t-\tau)^{\nu-n+1}} d\tau \quad n-1 < \nu < n, \; n \in \mathbb{N}$$

$$\Leftrightarrow s^\nu F(s) - \sum_{k=0}^{n-1} s^k aD_t^{\nu-k-1} f(0)$$

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \quad \Gamma(1) = 1 \quad \Gamma(x+1) = x \Gamma(x), \; x > 0$$
Mathematical important contributions: G-L

Grünwald (1838-1920), left, and Letnikov (1837-1888), right: a formulation useful for time numerical simulation

\[aD_t^\nu f(t) = \lim_{h \to 0} \frac{1}{h^\nu} \left[\frac{(t-a)/h}{h} \right] \sum_{i=0}^{[\nu]} (-1)^i \binom{\nu}{i} f(t - i h) \]

where \([x]\) is the integer part of \(x\) and \(\binom{\nu}{i} = \frac{\Gamma(\nu+1)}{\Gamma(i+1)\Gamma(\nu-i+1)}\)

Heaviside (1850-1925):
“There is a universe of mathematics lying in between the complete differentiations and integrations”
More recent mathematical contribution

Caputo (1927-):

\[aD_t^\nu f(t) = \frac{1}{\Gamma(n-\nu)} \int_a^t \frac{f^{(n)}(\tau)}{(t-\tau)^{\nu-n+1}} d\tau \quad n-1 < \nu < n \]

\[\Leftrightarrow s^\nu F(s) - \sum_{k=0}^{n-1} s^{\nu-k-1} f^{(k)}(0) \]

With zero in. cond.: \(s^\nu F(s) \)

Other definitions: Ortigueira, the 21st century tool ...
Please give me a break from this weird math!

Do you like this?
Fractals, fractal geometry, self-similarity, chaos, non-linear dynamics... Many examples from nature and physics
Applications: Fractional order systems and dynamics

Many real phenomena, behaviours, and processes are better modelled by differential equations (ODE or PDE) with non-integer order derivatives: fractal phenomena, power laws for long-term memory effects/properties, etc.:

- viscoelasticity in mechanical structures
- biology: diffusion of e.m. waves in tissues, drugs dynamics and diffusion in human body (anesthesia regulation), modelling of pathology in lungs, surface of malignant cell nucleus of breast cancers
- dispersion of pollutants in ocean
- motion of electronic charges in capacitors
- dynamics of stock prices
- behaviour of neurons
- signal processing (ECG, EEG)
- telematics: properties of 3D videos, the “fingerprint”
- anomalous diffusion
Modelling by FODE and FOTF

Linear I-O FODE:

\[
a_n D^{\alpha_n} y(t) + a_{n-1} D^{\alpha_{n-1}} y(t) + \ldots + a_1 D^{\alpha_1} y(t) + a_0 D^{\alpha_0} y(t) = \\
= b_m D^{\beta_m} u(t) + b_{m-1} D^{\beta_{m-1}} u(t) + \ldots + b_1 D^{\beta_1} u(t) + b_0 D^{\beta_0} u(t)
\]

- \(a_i, b_j\): real coefficients
- \(\alpha_i, \beta_j\): arbitrary positive real numbers with \(\alpha_i > \alpha_{i-1}, \beta_j > \beta_{j-1}\)
- \(\alpha_n > \beta_m\)

FOTF:

\[
G(s) = \frac{b_m s^{\beta_m} + b_{m-1} s^{\beta_{m-1}} + \ldots + b_1 s^{\beta_1} + b_0 s^{\beta_0}}{a_n s^{\alpha_n} + a_{n-1} s^{\alpha_{n-1}} + \ldots + a_1 s^{\alpha_1} + a_0 s^{\alpha_0}}
\]

Abel’s famous FODE yields

\[
G(s) = \frac{1}{s^\nu + a}
\]

Today, also \textit{non-linear} fractional order models
Ok, done with some math background

Let's move to control ...
Fractional order control: Ideas by pioneers

Bode (design of feedback amplifiers) (1945): a fractional integrator is the ideal open-loop TF in designing controllers robust to gain/load variations

\[G(s) = \left(\frac{\omega_{gc}}{s} \right)^{\nu} \]

Tustin (1958): motion control of massive objects by approximating an integrator of order \(\nu = 1.5 \) and nearly constant phase margin of 45° over a wide frequency range around the \(\omega_{gc} \), i.e. between 0.2 \(\omega_{gc} \) and 1.4 \(\omega_{gc} \)

Manabe (1961): dynamics of flexible spacecraft structures
Fractional order control: Recent famous achievements

CRONE control, Bordeaux (FR) team head by Oustaloup (1980): car suspensions control, control of industrial/thermal plants, etc.

TID controller (1994): Lurie, Three-parameter tunable tilt-integral-derivative (TID) controller, patent US5371670 for systematic setting of a fractional integrator plus I & D actions

$\text{PI}^\lambda \text{D}^\mu$ controllers (1999): Podlubny, *IEEE TAC*, 44 (1), pp. 208-214: $G_c(s) = K_P + \frac{K_I}{s^\lambda} + K_D s^\mu \rightarrow$ A generalization

Monje, Vinagre, Feliu, Chen (2008): “Tuning and auto-tuning of fractional order controllers for industry applications”. *Control Engineering Practice*, 16, pp. 798-812

Literature (control, robotics, system identification, etc.): non-integer order controllers, FOPID contr., FO(PI) contr., FOC, PI$^\alpha$, (PI)$^\alpha$...
Fractional order controller: Basic idea (1)

s^ν, with $\nu \in \mathbb{R}$, allow to obtain slopes that are fractions of the usual $\pm 20 \text{ dB/decade}$ and phase shifts that are fractions of $\pm \pi/2$.

\[
G(s) = \left(\frac{\omega_{gc}}{s}\right)^\nu
\]

$\omega_{gc} = 1 \text{ rad/s}$
The open-loop frequency response is shaped (mag. and phase diagram) to meet performance and robustness specifications and to obtain a “flat” phase diagram in a sufficiently wide range around the crossover frequency. Flatness implies higher robustness.
Fractional order controllers: Benefits and Issues

- **Improvement** of closed-loop performance and robustness, if the plant is an integer order system and especially if it is modelled as a non-integer order system.
- **Impact on industrial control loops** and on digital applications based on PID.
- **Flexibility**: more design degrees of freedom, i.e. λ and μ.

- A rational approximation with minimum-phase zeros and stable poles is required for implementation.
- Quality of analog/discrete approximation depends on location of zeros and poles (usually interlaced).
Have a deep breath...
CNG engines: Motivation and issue

Why Compressed Natural Gas (CNG) engines?
To reduce consumptions and pollution and maintain or increase performance

Pressure control to accurately meter the air-fuel mixture that strongly affects combustion efficiency

Difficulty: gas compressibility make the working conditions vary to a large extent
The injection system: Components and operation (1)

A fuel tank of high pressure gas
A mechanical pressure reducer (PR): a main chamber (MC) & a control chamber (CC)
A fuel metering system: common rail and 4 electro-injectors
A solenoid valve (SV) regulates the flow into CC
An Electronic Control Unit (ECU)

The injection flow only depends on:
- the $p_{rail} \approx p_{MC}$
- the injectors opening time intervals t_j driven by ECU

Tank: 30-200 bar ⇒ Common rail: 5-25 bar
The injection system: Components and operation (2)

ECU determines $x_2 = p_{\text{rail}}$ and controls gas flow:

1. sets injection timings depending on engine speed and load
2. PWM of the duty cycle of the driving current to open/close the SV \Rightarrow pressure in CC: p_{CC}

Inflow section of the PR is varied by displacing a shutter (S) coupled with a piston (P)

Gas in MC pushes P up & gas in CC pushes P down

1. If SV is energized, gas enters CC and pushes P down: S is opened, more fuel enters MC, then p_{MC} increases
2. If SV is not energized, p_{CC} decreases, P raises and S is closed by action of a preloaded spring
The injection system: Non-linear model

Assumptions:
1. the control chamber and the rail circuit have constant temperature and uniform pressures: $x_1 = p_{CC}$, $x_2 = p_{rail}$
2. Tank pressure p_{tk}: measure always available (fuel supply) and $\approx \text{const}$ in a large time interval
3. u_1, u_2: commands to valve and injectors
4. Injection pressure $p_{rail} \Rightarrow$ no modeling of electro-injectors

\[
\begin{align*}
\dot{x}_1(t) &= c_{11} p_{tk}(t) u_1(t) - c_{12} \sqrt{x_2(t)} [x_1(t) - x_2(t)] \\
\dot{x}_2(t) &= c_{21} p_{tk}(t) [c_{24} x_1(t) - c_{25} x_2(t) - c_{26} p_{tk}(t) - c_{27}] - c_{22} x_2(t) u_2(t) \\
&\quad + c_{23} \sqrt{x_2(t)} [x_1(t) - x_2(t)]
\end{align*}
\]

Model describes the complex dynamics in several equilibrium points

Main controlled variable for CNG injection: x_2
The injection system: Linearization

Different equilibrium working points ⇒ **Different tunings of the controller**

Choice that works because control must keep the pressure close to a reference value, depending on driver power request, engine speed and load

\[
\begin{align*}
\delta\ddot{x}(t) &= A\delta x(t) + B\delta u(t) \\
\delta y(t) &= \delta x_2(t) = C\delta x(t)
\end{align*}
\]

\[
\begin{align*}
\delta x(t) &= x(t) - \bar{x}, \delta u(t) &= u(t) - \bar{u}
\end{align*}
\]

The Laplace transform of the linearized model yields:

- \(p_{tk} \) greatly affects the control action through \(G_{12} \)
- Injection process as a disturbance on the rail pressure
- Control chamber and rail pressure dynamics are strongly coupled
The injection system: Equilibrium point

Working point: to inject the proper fuel amount (depending on power request, speed and load), ECU sets p_{rail} and t_j by look-up tables

- operation strongly depends on $\bar{p}_{tk}, \approx \text{const}$ during injection
- the injection flow rate only depends on $p_{rail} = x_2$

Optimal injection profile is set for each working point, that refers to specific values of p_{tk}, p_{rail}, and injection timings t_j

- **INJECTORS**: $\bar{u}_2 = 4 \cdot t_j \cdot \nu / 120$ is the mean of injection frequency
- **VALVE**: \bar{u}_1 is the mean duty cycle of driving current
- \bar{p}_{tk}, \bar{x}_2 and \bar{u}_2 are set $\Rightarrow \bar{u}_1$ and \bar{x}_1 computed from the nonlinear model
The injection system: Linearized model

We consider only $\delta \bar{u}_1$, and indicate it as u. Then:

$$y(s) = \frac{a_{21} b_{11}}{s^2 - (a_{11} + a_{22}) s + a_{11} a_{22} - a_{12} a_{21}} u(s) \approx \frac{K}{1 + T s} e^{-\tau s} u(s)$$

τ is for the pressure propagation from the main chamber to the common rail

$K = a_{21} b_{11}/(s_1 s_2)$, $T = -1/s_1$, τ is experimentally determined

\Rightarrow Sufficient accuracy to represent the nonlinear CNG injection system
(tests by simulation in different working points)

\Rightarrow Comparison of different controllers designed for FOPTD systems
The Control Strategy

Several equilibrium points: K, T, τ change \Rightarrow Gain scheduling to adapt the controller to variations

For each p_{tk}, the working point is established by the p_{rail} and by the average duration of injection. For each point, a different FOC:

a. consider the variation from current to new required point
b. design FOC with reference to the new point

Ok if variations < 2 bar for rail pressure and 6 s for injection duration

If variations are higher, then consider several intermediate values

Note 1: stability in switching is tested by detailed simulation
Local stability by FOC and steps to intermediate values are bounded

Note 2: it is usual to employ maps of PI-gains (tuning by Z-N) for the working points
Have another breath...
Robust stability by D-decomposition

Applied to integer order systems to design & determine all stabilizing controllers

Aim: set of controller gains leading to closed-loop stability

Why?

- Changes in working conditions in injection: knowing the set of the gains avoids time-consuming stability checks for any new controller settings and makes the tuning faster

- If the chosen controller gains correspond to a point of the set that is far from its boundary, then stability is still guaranteed for bounded variations

A stability domain: remember Nyquist?
Stability regions by D-decomposition

Open-loop TF: $G(s) = \frac{K_I (1 + T_I s^\nu)}{s^\nu} \frac{K e^{-\tau s}}{(1 + T s)}$

Closed-loop TF: $F(s) = \frac{K K_I (1 + T_I s^\nu) e^{-\tau s}}{(1 + T s) s^\nu + K K_I (1 + T_I s^\nu) e^{-\tau s}}$

Fractional order characteristic pseudo-polynomial equation:

$E(s) = (1 + T s) s^\nu + K K_I (1 + T_I s^\nu) e^{-\tau s} = 0$

Domain \mathcal{D} of all stabilizing controllers: in the parameter space associated to the triple (K_P, K_I, ν), such that all roots are LHP \mathcal{D} is defined by a real root boundary (RRB), an infinite root boundary (IRB), and a complex root boundary (CRB)
Stability regions by D-decomposition: Boundaries

IRB: for $s \to \infty$, not existing

RRB from $E(s = 0) = 0$: $K_I = 0$

CRB from $E(s = j\omega) = 0$:

\[
K_I(\omega) = \frac{\omega^\nu (\sin(x) + \omega T \cos(x))}{K S}
\]

\[
K_P(\omega) = \frac{(\omega TS - C) \sin(x) - (S + \omega TC) \cos(x)}{K S}
\]

$\theta = \frac{\pi}{2} \nu, x = \omega \tau$

$C = \cos(\theta), S = \sin(\theta)$
If we fix ν, then a curve in a 2D-space (K_P, K_I) for ω from 0 to ∞.

Stability regions by D-decomposition
Relative stability lines by D-decomposition

PM line: increase the dead-time in $G(s)$ by PM_s: $x \rightarrow y = x + PM_s$

GM line: amplify $G(s)$ by GM_s: $K \rightarrow K GM_s$

- **Point x:** PM_s, GM_s, crossover frequencies ω_{gc} and ω_{pc}
- Distance between the CRB curves and design points (relative stability lines) measures the robustness level
Did I break your synapses?
Design by loop-shaping: Starting formulas

\[G_p(s) = \frac{Ke^{-\tau s}}{1 + Ts} \]

\[G_c(s) = K_P + \frac{K_I}{s^\nu} = \frac{K_I}{s^\nu} (1 + T_I s^\nu) \quad T_I = K_P / K_I \quad 1 < \nu < 2 \]

\[G(j\omega) = G_c(j\omega)G(j\omega) = \frac{KK_I}{\omega^\nu} \left\{ \cos(0.5 \nu \pi) + j\sin(0.5 \nu \pi) \right\} \left(1 + j\omega T_I\right) \]

If we use \(u = \omega T \):

\[G(ju) = \frac{KK_I T^\nu}{u^\nu} \left\{ 1 + T_I \left(\frac{u}{T} \right)^\nu \cos(0.5 \nu \pi) + j\sin(0.5 \nu \pi) \right\} \left(1 + ju\right) e^{-j\frac{u\tau}{T}} \]
Design by loop-shaping: Main idea
Approximation of perfect I-O tracking and fractal robustness

\[F(ju) = \frac{1}{1 + G^{-1}(ju)} \]

\[|F(ju)| \approx 1 \iff y(ju) \approx r(ju) \text{ in a limited bandwidth } u_B = \omega_B T_E \]

For a stable performance despite changes in parameters, shape the open-loop freq. resp. around the gain crossover by using the fractional I to obtain \(PM_s \), held nearly constant in a wide range around the crossover \(u_C \) (a flat phase diagram and a magnitude diagram with fractional slope of \(-20 \nu \) dB/decade in this range) \(\Rightarrow \) Selection of \(T_I \) and \(\nu \)
Design method: Enforcing the specifications

1st requirement: \(u_B \) ensuring a good tracking response

Trade-off between fast closed-loop response and placement of \(u_C \) in a central position in the flat region of the phase diagram

Estimation \(u_C \in [\frac{u_B}{1.7}, \frac{u_B}{1.3}] \): \(u_C = \frac{u_B}{1.5} \)

2nd requirement: a phase margin \(PM_s \) in a wide range around \(u_C \)

\[
PM = \tan^{-1} \left(\frac{T_I \left(\frac{u_C}{T} \right)^{\nu} \sin(0.5 \nu \pi)}{1 + T_I \left(\frac{u_C}{T} \right)^{\nu} \cos(0.5 \nu \pi)} \right) - \tan^{-1}(u_C) - \frac{u_C \tau}{T} + \pi - \frac{\pi}{2} \nu
\]

\[
= \varphi_1(u_C) - \varphi_2(u_C) - \frac{u_C \tau}{T} + \pi - \frac{\pi}{2} \nu
\]

Select \(T_I \) s.t. \(\varphi_1(u_C) - \varphi_2(u_C) - \frac{u_C \tau}{T} = 0 \). Then: \(PM = (2 - \nu) \frac{\pi}{2} \)
Design by L-S: Relation between ν and phase margin

$$PM = (2 - \nu_s) \frac{\pi}{2} \quad \nu = 2 - \frac{PM_s}{\pi/2}$$

A direct relation between the fractional order and the specified phase margin!

<table>
<thead>
<tr>
<th>ν</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>63°</td>
</tr>
<tr>
<td>0.4</td>
<td>54°</td>
</tr>
<tr>
<td>0.5</td>
<td>45°</td>
</tr>
<tr>
<td>0.6</td>
<td>36°</td>
</tr>
</tbody>
</table>
Design by L-S: Resolving formula for T_I

$$T_I = \frac{u_C + \rho}{(u_C T)^\nu} \frac{1}{(S - u_C C - \rho (C + u_C S))}$$

$$\rho = \tan \left(\frac{u_C \tau}{T} \right)$$

$$S = \sin(0.5 \nu \pi)$$

$$C = \cos(0.5 \nu \pi)$$
Design by L-S: Resolving formula for K_I

Gain crossover: $|G^{-1}(j u_C)|^2 = 1$

$$\frac{1}{K^2 K_I^2} \left(\frac{u_C}{T} \right)^{2\nu} \frac{1 + u_C^2}{1 + 2 T_I \left(\frac{u_C}{T} \right)^\nu C + T_I^2 \left(\frac{u_C}{T} \right)^{2\nu}} = 1$$

$C = \cos(0.5 \nu \pi)$

$$\bar{K}_I = \frac{1}{K} \left(\frac{u_C}{T} \right)^\nu \sqrt{\frac{1 + u_C^2}{1 + 2 T_I \left(\frac{u_C}{T} \right)^\nu C + T_I^2 \left(\frac{u_C}{T} \right)^{2\nu}}}$$

G. Maione
FOC for common rail pressure regulation in CNG engines
Algorithm of design procedure

1. Fix ν. Specifications: u_B, PM_s. Then: $u_C = \frac{u_B}{1.5}$ and $\nu = 2 - \frac{PM_s}{\pi/2}$

2. Set T_I: $T_I = \overline{T}_I = \frac{u_C + \rho}{(\frac{u_C}{T})^\nu (S - u_C C - \rho (C + u_C S))}$

3. Set K_I: $K_I = \overline{K}_I = \frac{1}{K} \left(\frac{u_C}{T} \right)^\nu \sqrt{\frac{1 + u_C^2}{1 + 2 \overline{T}_I \left(\frac{u_C}{T} \right)^\nu C + \overline{T}_I^2 \left(\frac{u_C}{T} \right)^{2\nu}}}$

 Determine $\overline{K}_p = \overline{T}_I \overline{K}_I$

4. Approximate s^ν then $G_c(s) = \overline{K}_p + \frac{\overline{K}_I}{s^\nu}$
An approximation by a truncated CFE

A rational approximation with minimum-phase zeros and stable poles is required for implementation. Efficient approximation of s^ν, for $0 < \nu < 1$, from truncation of a CFE (Maione, 2008):

$$s^\nu \approx \frac{\alpha_{N,0}(\nu) s^N + \alpha_{N,1}(\nu) s^{N-1} + \ldots + \alpha_{N,N}(\nu)}{\beta_{N,0}(\nu) s^N + \beta_{N,1}(\nu) s^{N-1} + \ldots + \beta_{N,N}(\nu)}$$

$$\alpha_{N,j}(\nu) = \beta_{N,N-j}(\nu) = (-1)^j \binom{N}{j} (\nu + j + 1)(\nu - N)_j$$

$$(\nu + j + 1)(\nu - N)_j = (\nu + j + 1)(\nu + j + 2) \cdots (\nu + N)$$

$$(\nu - N)_j = (\nu - N)(\nu - N + 1) \cdots (\nu - N + j - 1)$$

⇒ Closed-form formulas

⇒ Interlaced negative real z & p is guaranteed

If s^ν, with $1 < \nu < 2$, then $s^\nu = s s^{\nu-1}$ and approximate $s^{\nu-1}$
Approximation with only $N = 4$ z-p pairs

Fractional differentiator $s^{0.5}$
Approximation by CF (Maione)

Angular frequency [rad/s]
Phase [degrees]
Need some air?
Simulation tests

- **Non-linear state-space model** implemented in the Matlab/Simulink environment
- AMESim package, a multidomain virtual prototyping tool
- Each working condition of the CNG injection system provides a different triple \((K, T, \tau)\)
- Each \((K, T, \tau)\) has an associated FOPI controller

\[
uB = 8.55 \text{ then } \omegaB = \frac{uB}{T}\]

Some good values of the fractional order \(\nu: 0.3, 0.4, 0.5, 0.6\)

\(N = 5\) zero-pole pairs to approximate the fractional integrator

Important: to limit overshoot/steady-state errors/settling times in \(p_{\text{rail}}\) because oversupply/undersupply of fuel alters the air-fuel ratio and increases consumptions and emissions
First test: Small step in the reference pressure

Injectors exciting time interval: 5 ms
Engine speed: 2500 rpm
Tank pressure: 50 bar
Only one PI (with open-loop Z-N rules) or FOPI

Increase in o.s. then inaccurate metering of the injected fuel by PI
Problems much more with PI:
- disturbances and nonlinearities related to injectors operations
- PWM modulation of the solenoid valve command
- saturation
Second test: Large step in reference pressure

3 PIs or FOPIs are used
Third test: Disturbance rejection

Tank pressure: 50 bar
Rail pressure reference: 5 bar

Variation at $t = 2.5\text{ s}$: engine speed $2500 \rightarrow 5000\text{ rpm}$ then injectors exciting time interval $3 \rightarrow 8\text{ ms}$

The injected fuel increases but initially the valve can not maintain the reference rail pressure that decreases:

- FOPI promptly reacts
- PI has much more overshoot, then more problems in fuel regulation

FOPI compared to a Generalized Predictive Controller:

- FOPI yields much lower rise time and similar settling time
- FOPI has inherent fractal robustness
- FOPI is less complex
Conclusions

- FOPI control of rail pressure for injection in CNG engines
- **Loop-shaping to design FOPI:**
 - Optimality of feedback system
 - High robustness to changes in gain & internal parameters
 - Good closed-loop performance
 - Ability to reject load disturbances
- **Closed-form formulas** to relate performance & robustness specifications to \((K_P, K_I, \nu)\) of the FOPI controller
- **Gain scheduling** for adapting the controller to different working conditions
- Test by commercial sw & experiments
In Italy, the shortest path between two points is an arabesque *(Flaiano, famous Italian writer)*

In Bank of Italy, for the shortest path you need fractal geometry *(Unknown)*

What about career in academics?
Acknowledgements

Research in past years was supported by the Italian Ministry of University and Research under project “Non integer order systems in modeling and control”, grant no. 2009F4NZJP.

Much work done with my colleague Dr. Paolo Lino

Many thanks to:
Prof. Kang Li, QUB, School of Electronics, Electrical Engineering and Computer Science, and IEEE CC Ireland Chapter!!!