
Classification on Fatty cattle data

Jing Deng

September 15, 2011

Abstract

This report first introduced the techniques used for data analysis. Then the
results will be given in two main sections. First, the support vector machine (SVM)
and nonlinear Fisher discriminant analysis (NFDA) will be employed to build the
classifier on the original data. The aim is to construct an classifier which can
be used to prediction the fatty liver by using measurable protein levels. Second,
as the original data is highly imbalanced, the Synthetic minority over-sampling
technique (SMOTE) is used to randomly generate some negative samples (Normal
cattle without fatty liver). The same process with then implemented on the new
data set. A brief conclusion of the experimental results and suggested future work
is given in the last section.

Keywords: Nonlinear Fisher discriminant analysis, support vector machine, Two-
stage selection, leave-one-out cross validation, Synthetic minority over-sampling technique

1 Introduction

Classification is the problem of identifying the sub-population to which a new observation
belongs. As a universal technique, classification has been widely applied in statistical
analysis, pattern recognition and machine learning [1]. Most techniques are originally
proposed for two-class classification, while their generalized variants may be used for
multi-class cases [2]. Nevertheless, two-class classification still covers a wide range of
practical applications.

An important issue with two-class classification in practice is the imbalanced problem
which means the instances in one class outnumber the instances of the other classes.
Such an imbalance in the data represents the so-called between-class imbalance. Ac-
tually, imbalanced problems widely exist in the fields of medical diagnosis, science and
engineering, and some examples includes surveillance of nosocomial infection, cardiac
care and elucidating protein-protein interactions as well as fraud detection, network in-
trusion detection and telecommunication management. Normally, the instances in the
majority class are referred to as negative, while in its counterpart, the minority class, the
instances are referred to as positive. The most convenient and effective way to deal with
imbalanced learning problems is the re-sampling approach which only adjust the original
training data set instead of modifying the learning algorithm. It has been shown that
balanced data sets provides better classification performance than imbalanced ones [3].
Among the most studied re-sampling approaches, the synthetic minority over-sampling

1

technique (SMOTE) [4] is a well acknowledged over-sampling method, in which the mi-
nority class is over-sampled by creating synthetic instances in the feature space formed
by other minority instances and their K-nearest neighbours.

To assess the generalization ability, the resultant classifier is usually applied to a set
of test data. This involves splitting all the available measured data into different sets.
However, the amount of data available is often limited, so it is desirable to use all the
data available to train the model without sacrificing any generalization performance. A
typical way of doing this is to employ cross validation. The limited data set is split
into s parts in which s − 1 parts are used for model training, and the single remaining
part is used for model testing. This procedure is continued until all s different possible
combinations has been implemented. The extreme case of cross validation is known as the
Leave-One-Out (LOO) method [5, 6], where only one sample is used for testing and the
rest left for training. The overall model error or LOO error is then the average test error
of each data sample. Though this approach can achieve improved model generalization,
its computational complexity is extremely high. Generally, it is therefore feasible only
for very small data set, because the computational complexity is proportional to the
total number of data samples. However, if the model has a Linear-In-The-Parameters
structure, it has been shown that LOO error can be calculated without splitting the data
set explicitly [6]. In this work, the data set is small, so LOO cross validation is used
directly.

With the training data and test data sets been pre-processed, the classifier is then
developed based on the object’s characteristics (also known as features). Early work
was mainly concentrated on a linear classifier, non-linear solutions are the major interest
nowadays. More specifically, a linear classifier is defined as one where the classification
decision is made based on the value of a linear combination of the characteristics. The best
known method is linear discriminant analysis (LDA), which assumes that the collected
data samples are normally distributed in each class. Fisher’s linear discriminant [7] is
derived from LDA.

Clearly, a linear discriminant may not be complex enough for real world applications.
More sophisticated methods are available for non-linear problems, such as neural networks
[8]. However, by using the kernel approach a linear discriminant can still be employed
for non-linear classification [9].

The kernel idea was originally proposed for support vector machines (SVM) [10, 11]
and non-linear principal component analysis (NPCA) [12]. It maps the input data into
a high (or even infinite) dimensional feature space where the original problem becomes
linear. The so-called kernel trick is involved here as the non-linear mapping function
doesn’t need to be known explicitly. The algorithm only uses dot products (also known
as kernels) of the mapped data, instead of their explicit position in the feature space.
Figure 1 illustrates the non-linear projection. Possible choices for kernel are the Gaussian
radial basis function (RBF) or a polynomial function [9].

Fisher’s linear discriminant can also be easily generalized to non-linear classification
using such a kernel projection [2], leading to the more flexible kernel Fisher discriminant
(KFD) [9]. The main issue that affects practical implementation is the computational
complexity which scales with the number of training samples. Thus, KFD is not recom-
mended for use on large data sets.

One solution is to transform KFD into a least-squares problem [13], and then to
adopt a forward selection algorithm, such as orthogonal least squares (OLS) [14, 15] or
the fast recursive algorithm (FRA) [16], to produce a compact classifier [13, 17]. Though

2

Figure 1: Non-linear mapping in kernel approach

a forward construction scheme can efficiently build a sparse model from a large candidate
term pool, the final model is not optimal [18], since the calculation of the contribution
of any new term depends on previously selected ones [19]. To reduce this constraint,
genetic search has been suggested to refine the model structure [20], but at the expense
of a very high computational complexity. In [19], a two-stage stepwise construction
method was recently proposed which combined both forward and backward construction
procedure. This retains the computational efficiency of the FRA while improving the
model compactness.

In the above two-stage construction algorithm, an initial model is first constructed
by the FRA where the contribution of a particular term of interest is measured by its
reduction in an appropriate cost function. The significance of each selected term is then
reviewed at a second stage of model refinement, and insignificant terms are replaced.
Specifically, if the contribution of a previously selected term is less than any from the can-
didate pool, it will be replaced with this. Thus, the cost function can be further reduced
without increasing the model size. This checking cycle is iterated until no insignificant
model term exists in the trained model, resulting in an optimized model structure with
improved performance.

Another widely used technique is the well-known support vector machine (SVM)[21,
22] which has been utilized widely and achieved a strong track record in various biolog-
ical applications, ranging from the gene classification of microarray data [23, 24], tumor
classification [25] to the identification of hormone misuses in cattle [26]. Nevertheless, an
unfavourable fact with the SVM algorithm is its expensive computational cost. Training
a SVM involves a quadratic programming subject to linear inequality constraints. The
resultant classifier also suffers from the curse of dimension. It usually requires more sup-
port vectors than Non-linear Fisher discriminant analysis to achieve satisfactory accuracy.
The experimental result in the following sections will confirm this.

2 Preliminaries

2.1 Support Vector Machine

The support vector machine tries to find a separating hyperplane in this space with which
the training data are correctly arranged into their intended class and the distance between

3

boundaries of the two classes, which is known as the margin, is maximized. However, in
practice, most real-life problems are not trivial so that the separating hyperplane cannot
be located. This problem is solved by mapping the data to a space of higher dimensions
where they become separable. The new space is termed as feature space, as opposed
to the input space which contains the training data. However, one obvious drawback is
that the data mapping from the input space to the feature space imposes more compu-
tational cost. Nonetheless, in the case that the feature space is infinite in dimensions,
great difficulties arise in implementing the data transformation. Fortunately, in SVM
algorithms, a favourable fact is that its optimal hyperplane requires only the dot product
between training data in the feature space. By introduction of the kernel technique which
performs the dot products between vectors of feature space, the search for the optimal
hyperplane can be formulated even without explicit knowledge of the feature space. This
feature of kernel function spares SVMs the computation of the exact representation of the
training data in the feature space. For ill-posed classification problems, it is not practical
to have a hyperplane of the optimal margin with which each training sample falls into
the supposed group. SVMs then settle for a separating hyperplane which allows classifi-
cation errors on training errors. It then require the solution of the following optimization
problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
TΦ(xi) + b) ≥ 1− ξi (1)

ξi ≥ 0

where the sample xi are mapped into a higher dimensional space by the kernel function
Φ. The parameter C is to be chosen to impose penalties on errors, which actually acts as
the trade-off between the training errors and the margin. Therefore, the establishment
of a support vector machine is started with proper settings of the penalty constant and
also parameter(s) of the chosen kernel function, which depend heavily upon the specific
training data set. Experiments in this report all opted for Gaussian radial basis function
(RBF) which is the most widely used one and takes the form of

K(xi,xj) = exp(−σ ‖ xi − xj ‖2) (2)

where σ is a constant and normally pre-determined. In this report, the parameter
σ as well as the penalty constant, denoted as C, for an SVM is tuned by implementing
grid-search and is set as the values which produce the best leave-one-out cross validation
(LOOCV) accuracy. The SVM were implemented by LIBSVM [27].

2.2 Nonlinear Fisher discriminant analysis

Nonlinear Fisher Discriminant (NFD) analysis is a generalization of linear Fisher discrim-
inant analysis produced by adapting the kernel method. Specifically, the data samples
are first mapped into some high dimensional feature space F using a nonlinear function
φ, with linear discriminant analysis subsequently performed in this feature space. The
advantage of the kernel approach is that the mapping function does not need to be known
exactly. Only the dot product of the mapped data is involved in solving the problem,
and this can be represented by a suitable kernel function (e.g. a Gaussian kernel). Thus

k(xi,xj) = φ(xi)
T · φ(xj) (3)

4

Normally, a nonlinear discriminant function w ∈ F can be obtained by maximising
the following function

J(w) =
wTSφBw

wTSφWw
(4)

where
SφB = (mφ

1 −mφ
2)(mφ

1 −mφ
2)T (5)

and

SφW =
∑
i=1,2

∑
x∈ci

(
φ(x)−mφ

i

)(
φ(x)−mφ

i

)T
(6)

where mφ
i is the mean value of the samples in each class. Following [9], it can be shown

that the discriminant function w is given by

w = (SφW)−1(mφ
1 −mφ

2) (7)

and the projection of a new sample xi onto w is given by

ŷi = φ(xi)
Tw (8)

According to [17], the nonlinear discriminant function obtained using a minimum
squared-error cost function has the same direction as the Fisher discriminant solution.
Specifically, suppose that a set of N data samples belongs to two categories. The first N1

samples are collected from class 1 with label value y1, and the remaining N2 samples are
from class 2 with label value y2. By letting the output y1 = N/N1 and y2 = N/N2 (Ni

is the number of samples belonging to class i), it can be shown that the NFD is directly
related to least-squares problems.

Assuming N data samples are available for training, equation (8) can be written as:

1
...
1

φ(x1)
T

...
φ(xN1)

T

1
...
1

φ(xN1+1)
T

...
φ(xN)T

(
w0

w

)
+

e1
...
...
...
...
eN

=

y1
...
y1

y2
...
y2

(9)

where w0 is the threshold, and ei, i = 1 . . . N are the model errors. Equation (9) can
be re-written in matrix form as:

Xw + e = y (10)

Here, w0 is already included in w. The least-squares method solves this equation by
minimizing the cost function

J(ŵ) =‖ e ‖2= ||y −Xŵ||2 (11)

leading to the solution
XTXŵ = XTy (12)

such that
ŵ = (XTX)−1XTy (13)

5

In [17], it is shown that
ŵ = η(SφW)−1(mφ

1 −mφ
2) (14)

where η is a constant. It is clear that (7) and (14) are identical except for an unimportant
constant.

Unfortunately, the mapping function in equation (9) still needs to be known exactly.
This is difficult to calculate or may not be available in practice. The following shows that
the calculation of Φ can be avoided by adopting the kernel method.

It is assumed that w ∈ F , so that it can be spanned by all the training samples in F .
Thus, w can be expressed as

w =
N∑
i=1

αiφ(xi) (15)

Substituting Eq.(15) into Eq.(9) and replacing φ(xi)
T · φ(xj) with k(xi, xj) gives

 1
...
1

k(x1,x1)
...

k(xN ,x1)

. . .
...
. . .

k(x1,xN)
...

k(xN ,xN)

w0

α1
...
αN

+

e1
...
...
eN

 =

y1
...
y1

y2
...
y2

(16)

By writing the above equation in matrix form

Pθ + e = y (17)

(where θ is the parameter vector and e is the error vector) the Fisher discriminant analysis
is converted to a least-squares formulation with the regression matrix P already known,
leading to the solution

θ̂ = (PTP)−1PTy (18)

Normally, the column terms in P are redundant and correlated, and the information
matrix (PTP) is ill-conditioned. The direct solution obtained from (18) is therefore not
accurate. Among the numerical methods available for computing θ̂, matrix decomposition
methods are widely used [28] with Orthogonal Least Squares (OLS) being the best-known
[14, 15]. An alternative, however, is the Fast Recursive Algorithm (FRA) which has
proven to be more efficient and stable. In this work, improved two-stage selection (TSS)
methods will be proposed and applied to the nonlinear Fisher discriminant analysis to
obtain a more compact classifier with better generalization performance.

2.3 Two-stage selection

Stepwise selection is the recommended subset selection technique owing to its superior
performance [5]. However, in conventional stepwise selection, all the terms already se-
lected need to undergo some significance check before choosing a new term, and those re-
garded as insignificant are then removed from the model at each iteration. This inevitably
increases the overall computation complexity. By contrast, the recently proposed two-
stage selection algorithm [19], which includes a forward selection stage [16] and a second
backward refinement stage, provides a more efficient alternative. Insignificant terms can
be effectively removed at the second stage without much increasing the computation.

6

2.3.1 Forward recursive selection - first stage

The Fast Recursive Algorithm (FRA) is based on a recursive matrix Mk and a residual
matrix Rk defined by

Mk , ΦT
kΦk k = 1, · · · , n (19)

Rk , I−ΦkM
−1
k ΦT

k R0 , I (20)

where Φk ∈ <N×k contains the first k columns of the regression matrix P in (18). Ac-
cording to [16] and [19], the matrices Rk, k = 0, · · · , n possesses the following attractive
properties:

Rk+1 = Rk −
Rkφk+1φ

T
k+1R

T
k

φTk+1Rkφk+1

, k = 0, 1, · · · , n− 1 (21)

RT
k = Rk; (Rk)

2 = Rk, k = 0, 1, · · · , n (22)

RiRj = RjRi = Ri, i ≥ j; i, j = 0, 1, · · · , n (23)

Rkφj =

{
0, rank([Pk,φj]) = k

φ
(k)
j 6= 0, rank([Pk,φj]) = k + 1

, j = 0, 1, · · · , n (24)

R1,··· ,p,··· ,q,...,k = R1,··· ,q,··· ,p,...,k, p, q ≤ k (25)

Suppose the selected regressors are expressed as pi, (i = 1, · · · , n), equation (25) means
that any change in the selection order of the pi does not change the residual matrices
Rk. This property will help to reduce the computational effort in the second stage. The
cost function in (4) can now be rewritten as:

Jk(Pk) = yTRky (26)

In this forward stage, the model terms are optimized one at a time. Suppose at the
kth step, one more term pk+1 is to be selected. The net contribution of pk+1 to the cost
function can then be calculated as:

∆Jk+1(Pk,pk+1) = yT (Rk −Rk+1)y

=
yTRkpk+1p

T
k+1Rky

pTk+1Rkpk+1

=
(yTp

(k)
k+1)

2

pTk+1p
(k)
k+1

(27)

where p
(k)
k+1 , Rkpk+1. According to (21), this net contribution can be further simplified

by defining an auxiliary matrix A ∈ <n×M and a vector b ∈ <M×1 with elements given
by:

ai,j , (p
(i−1)
i)Tpj, 1 ≤ i ≤ j, 1 ≤ j ≤M (28)

bj , (p
(j−1)
j)Ty (29)

7

where p
(0)
j = pj. The definitions here are changed from the original TSS or FRA, so that

other techniques can be integrated without loosing efficiency. In [16], it is shown that ai,j
and bj can be updated recursively using:

ai,j = pTi pj −
i−1∑
l=1

al,ial,j/al,l (30)

bj = pTj y −
j−1∑
l=1

(al,jbl)/al,l (31)

Now, by substituting (28) and (29) into (27), the net contribution of a new model
term pk+1 to the cost function can be expressed as:

∆Jk+1(pk+1) =
b2k+1

ak+1,k+1

(32)

This provides a formula for selecting the best model term from the candidate pool
at each step. In practice, the calculation of a

(k+1)
j,j and b

(k+1)
j (j = k + 1, · · · ,M) can be

further simplified by recursive updating instead of using (30) and (31)

a
(k+1)
j,j = a

(k)
j,j − a2

k,j/ak,k (33)

b
(k+1)
j = b

(k)
j − ak,jbk/ak,k (34)

Thus at the end of each selection, these terms are updated and stored for use in the next
comparison or selection. By default, a

(k)
j,j and b

(k)
j will be written as aj,j and bj in what

follows. The selection procedure then continues until some termination criterion is met
(e.g., Akaike’s information criterion (AIC) [5]) or a desired model size is reached.

Finally, after a satisfactory non-linear model has been constructed, the coefficients of
each term are computed recursively according to:

θ̂j =

(
bj −

n∑
i=j+1

θ̂iaj,i

)
/aj,j, j = n, n− 1, · · · , 1. (35)

2.3.2 Model refinement - second stage

This involves the elimination of insignificant terms due to constraints introduced in for-
ward selection. Noting that the last selected term in the forward construction is always
maximally optimized for the entire model, the backward model refinement can be divided
into two main parts; Firstly, a selected term pk, k = 1, · · · , n−1 is shifted to the nth po-
sition as it was the last optimized one. Then, the contributions of all the candidate terms
are recalculated based on the new n − 1 selected regressors and compared with the one
at the nth position. If the shifted term is less significant than anyone from the candidate
pool, it will be replaced, leading to a reduced training error without increasing the model
size. This review is repeated until all the selected model terms are more significant than
those remaining in the candidate pool.

Re-ordering of selected terms

Suppose a selected model term pk is to be moved to the nth position in the regression
matrix Pn. This can be achieved by repeatedly interchanging two adjacent terms so that

p∗q = pq+1, p∗q+1 = pq, q = k, · · · , n− 1 (36)

8

where the ∗ is used to indicate the updated value. By noting the property in (25), it is
clear that only Rq in the residual matrix series is changed at each step. This is updated
using

R∗q = Rq−1 −
Rq−1p

∗
q(p
∗
q)
TRT

q−1

(p∗q)
TRq−1p∗q

(37)

Meanwhile, the following terms also need to be updated:

• In matrix A, only the upper triangular elements ai,j, i ≤ j are used for regressor
selection. The qth and the (q + 1)th columns, with elements from row 1 to q − 1,
need to be modified according to:{

a∗i,q = (p
(i−1)
i)Tpq+1 = ai,q+1

a∗i,q+1 = (p
(i−1)
i)Tpq = ai,q

, i = 1, · · · , q − 1 (38)

The qth row, with elements from column q to column n, is also changed using

a∗q,j =

aq+1,q+1 + a2

q,q+1/aq,q j = q
aq,q+1 j = q + 1
aq+1,j + aq,q+1aq,j/aq,q j > q + 2

(39)

and the (q + 1)th row aq+1,j, for j = q + 1, · · · , n, is likewise changed to

a∗q+1,j =

{
aq,q − a2

q,q+1/a
∗
q,q j = q + 1

aq,j − aq,q+1a
∗
q,j/a

∗
q,q j > q + 2

(40)

• For the vector b, only the qth and the (q + 1)th elements are altered. Thus

b∗q = bq+1 + aq,q+1bq/aq,q (41)

b∗q+1 = bq − aq,q+1b
∗
q/a
∗
q,q (42)

This procedure continues until the kth term is shifted to the nth position, the new regres-
sion matrix and the series of residual matrices then becomes

P∗n = [p1, · · · ,pk−1,pk+1, · · · ,pn,pk] (43)

{R∗k} = [R1, · · · ,Rk−1,R
∗
k, · · · ,R∗n] (44)

Comparison of net contributions

As the model term pk of interest has now been moved to the nth position in the full
regression matrix Pn, its contribution to the cost function needs to be reviewed. The
contribution of each candidate term is calculated based on the re-ordered terms pj (j =
1, · · · , n− 1). Specifically, aj,j and bj for j = n+ 1, · · · ,M are updated using

a∗j,j = a
(n+1)
j,j + (a∗n,j)

2/a∗n,n (45)

b∗j = b
(n+1)
j + b∗na

∗
n,j/a

∗
n,n (46)

9

The significance of the shifted term pk and those remaining in the candidate pool are
reviewed and their contributions to the cost function being recalculated as:

∆J∗n(pk) = ∆Jn(p∗n) = (b∗n)2/a∗n,n (47)

∆J∗n(φj) = (b∗j)
2/a∗j,j (48)

Now, assuming ∆J∗n(φs) = max{∆J∗n(φj), j = n + 1, · · · ,M}, and that ∆J∗n(φs) >
∆Jn(p∗n), then φs will replace p∗n in the regression matrix P∗n, and p∗n will be returned
to the candidate pool and will take the position of φs. Meanwhile, the following terms
need to be updated according to this interchange:

• In the matrix A, the following terms are updated

a∗i,n = ai,s, a∗i,s = ai,n (i = 1, · · · , n− 1) (49a)

a∗n,j =

as,s j = n
an,s j = s

φTs φj −
∑n−1

l=1 al,sal,j/al,l ∀j, j 6= n & j 6= s
(49b)

(a
(n+1)
j,j)∗ =

{
an,n − (a∗n,s)

2/a∗n,n j = s
a∗j,j − (a∗n,j)

2/a∗n,n j 6= s
(49c)

• In the vector b,
b∗n = bs (50a)

(b
(n+1)
j)∗ =

{
bn − a∗n,sb∗n/a∗n,n j = s
bj − a∗n,jb∗n/a∗n,n j 6= s

(50b)

The shifting and comparison procedures described above are repeated until no in-
significant term remains in the selected model. Finally, after a satisfactory model has
been constructed, the coefficients of each model term are computed recursively using (35).

2.4 Synthetic minority over-sampling technique

A major problem caused by imbalanced data set is that most classifier tend to attribute
the minority class instances to the majority class due to insufficient minority class training
instances in the decision region. As a result, the trained decision boundary tends to be far
away from the majority class. The contribution of SMOTE is to enhance the significance
of the small and specific region belonging to the minority class in the decision region,
which leads to the better generalization of the classifier.

The SMOTE over-samples the minority data by creating synthetic instances based on
the original minority data set. Suppose one minority data sample, denoted by x0, was
selected, the synthetic data points are randomly generated on the lines linking x0 with
some of its K nearest neighbours. K is pre-determined based on the sparsity of minority
data set. A oversampling ratio of the original minority data size, denoted by β% can also
be pre-determined. Thus, a new synthetic instance xs can be given as

xs = x0 + δ(x0,k − x0) (51)

where x0,k is the kth nearest neighbours of x0 in the minority class, and δ ∈ [0, 1] is a
random number. This procedure is repeated for all the samples in minority class.

10

3 Classification on original data sets

There are some sample values missing from the original data set. So some regression mod-
els (Radial basis function neural network model) were first constructed to approximate
those missing values. All the following analysis are based on the full data set without
any missing value.

3.1 Using support vector machine

the Matlab version of LIBSVM package was used for the classifier construction. As the
number of data available is still small for data-driven modelling, both the 5-fold cross
validation and leave-one-out cross validation were used to measure the generalization
performance of resultant classifier. Table 1 shows the results, including the structure and
parameters of SVM classifiers.

Table 1: Experimental results from SVM on original data set (C and σ are from (1) and
(2), the aim is to use a small number of SVs to achieve as higher accuracy as possible)

cross validation Number of SVs C σ Accuracy
5-fold 57 2.64 0.57 83.72%

Leave-one-out 61 2.3 0.87 83.72%

3.2 Using Fisher discriminant analysis

The Fisher discriminant analysis initially uses all data samples available to construct the
classifier, so the resultant classifier is usually very large and subset selection algorithm will
then be employed to enhance its sparsity. The method used in this report is our proposed
two-stage selection [19]. Further, in order to evaluate the generalization performance of
constructed classifier, 2/3 of the original data is randomly selected for training with
the remaining 1/3 reserved for testing. In order to compare the performance of NFD
with SVM, the generated data set is the same as previous section. Table 2 shows the
performances of different classifiers constructed by Fisher discriminant analysis. Gaussian
function is used as the mapping function with σ2 = 0.5 (by exhaustive search). The
sensitivity and specificity are given in (52) and (53) respectively.

Sensitivity =
TP

TP + FN
(52)

Specificity =
TN

TN + FP
(53)

where TP is represents true positive number(the samples belongs to positive class, and
the classifier predict it as positive class as well), FP is the false positive number (the
samples that belongs to negative class, but the classifier predict it as positive class), TN
is the tru negative numbers and FN denotes the false negative numbers. Normally, the
specificity is more important, as the risk or treating sick as normal is very high.

According to table 2, it is clear that the increase of classifier size leads to the increase
of both training accuracy and testing accuracy, but there is not much difference on test
accuracy when the classifier size increased to 10. The test specificity sometimes becomes
NaN. This may be caused by both the small number of test samples and small amount
of negative classes (normal cattle), so their values were not given in table 2.

11

Table 2: The performances of different classifier based on original data set (The training
specificity are all 100%, this is caused by the small number of negative samples)

Classifier size Training Sensitivity Training Specificity Test Sensitivity
4 87.04% 100.00% 79.31%
6 88.68% 100.00% 79.31%
10 94.00% 100.00% 85.19%
17 97.92% 100.00% 82.14%
19 97.92% 100.00% 85.19%

4 Classification on balanced data sets

As mentioned in the introduction section, imbalanced data will lead to inaccurate train-
ing. In this section, the SMOTE method was used to randomly generate some negative
samples (normal cattle) to rebalance the two classes. Originally, there are 70 positive
samples (Lipids = 1, 2, 3, or 4), and 14 negative samples (Lipids = 0), so there are 70-14
= 56 negative samples need to be generated, leading to a total number of 140 data points.

The results of SVM and NFD are given in table 3 and table 4 respectively. It is clear
that the results of SVM classification on balanced data is much better than on the original
data set. However, for the Fisher discriminant analysis, there are not much difference
with the original one. This means that SVM method is more sensitive to the data balance
while NFD is more robust on the data balance.

Table 3: Experimental results from SVM on balanced data set
cross validation Number of SVs C σ Accuracy

5-fold 77 3.03 1.32 98.51%
Leave-one-out 77 3.03 1.32 96.27%

Table 4: The performances of different classifier based on balanced data set (The data
set used is the same as used in SVM experiment, so the algorithm runs only once)

Classifier Training Testing
size Sensitivity Specificity Sensitivity Specificity
4 80.70% 87.50% 64.00% 80.00%
6 91.67% 85.37% 72.00% 90.00%
10 94.00% 92.31% 75.00% 90.48%
17 98.00% 97.44% 85.71% 91.67%
19 98.04% 100.00% 85.71% 91.67%

5 Conclusion and future work

Through the results, the classifier constructed by non-linear Fisher discriminant analysis
(NFD) and two-stage selection is more compact than from support vector machine (SVM),
and NFD is more robust on the imbalance data.

The future work includes:

12

• multi-class classification. In this report, all the cattle with larger than 0 Lipids
are regarded as positive class. However, it will be more useful to predict the Lipid
lever.

• Improved compactness of SVM. The Least-square support vector machine has sim-
ilar performance with conventional SVM, but the resultant classifier is more com-
pact. Our proposed two-stage selection can also be integrated with LS-SVM.

References

[1] C.M. Bishop. Pattern recognition and machine learning, volume 4. Springer New
York, 2006.

[2] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach.
Neural Computation, 12(10):2385–404, 2000.

[3] A. Estabrooks, T. Jo, and N. Japkowicz. A multiple resampling method for learning
from imbalanced data sets. Computational Intelligence, 20(1):18–36, 2004.

[4] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. Smote: syn-
thetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16(1):321–357, 2002.

[5] O. Nelles. Nonlinear System Identification. Springer, 2001.

[6] X. Hong, P. M. Sharkey, and K. Warwick. Automatic nonlinear predictive model-
construction algorithm using forward regression and the press statistic. IEE Pro-
ceedings: Control Theory and Applications, 150(3):245–254, 2003.

[7] K. Fukunaga. Introduction to statistical pattern recognition. Academic Pr, 1990.

[8] B.D. Ripley. Pattern recognition and neural networks. Cambridge Univ Press, 2008.

[9] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Muller. Fisher discriminant
analysis with kernels. Neural networks for signal processing IX, pages 41–48, 1999.

[10] V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, 2000.

[11] B. Schölkopf, C.J.C. Burges, and A.J. Smola. Advances in kernel methods: support
vector learning. The MIT press, 1999.

[12] B. Schölkopf, A. Smola, and K.R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[13] R.F. Harrison and K. Pasupa. A simple iterative algorithm for parsimonious binary
kernel fisher discrimination. Pattern Analysis and Applications, 13(1):15–22, 2010.

[14] S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and their
application to non-linear system identification. International Journal of Control,
50(5):1873–1896, 1989.

13

[15] S. Chen, C.F.N. Cowan, and P.M. Grant. Orthogonal least squares learning algo-
rithm for radial basis function networks. IEEE Transactions on Neural Networks,
2(2):302–309, 1991.

[16] K. Li, J.X. Peng, and G.W. Irwin. A fast nonlinear model identification method.
IEEE Transactions on Automatic Control, 50(8):1211–1216, 2005.

[17] S.A. Billings and K.L. Lee. Nonlinear fisher discriminant analysis using a mini-
mum squared error cost function and the orthogonal least squares algorithm. Neural
Networks, 15(2):263–70, 2002.

[18] A. Sherstinsky and R. W. Picard. On the efficiency of the orthogonal least squares
training method for radial basis function networks. IEEE Transactions on Neural
Networks, 7(1):195–200, 1996.

[19] K. Li, J. X. Peng, and E. W. Bai. A two-stage algorithm for identification of nonlinear
dynamic systems. Automatica, 42(7):1189–1197, 2006.

[20] K.Z. Mao and S.A. Billings. Algorithms for minimal model structure detection
in nonlinear dynamic system identification. International Journal of Control,
68(2):311–330, 1997.

[21] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2):121–167, 1998.

[22] N. Cristianini and J. Shawe-Taylor. An introduction to support Vector Machines:
and other kernel-based learning methods. Cambridge Univ Pr, 2000.

[23] M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, T.S. Furey,
M. Ares, and D. Haussler. Knowledge-based analysis of microarray gene expres-
sion data by using support vector machines. Proceedings of the National Academy
of Sciences, 97(1):262, 2000.

[24] T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haus-
sler. Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics, 16(10):906, 2000.

[25] Y. Lee and C.K. Lee. Classification of multiple cancer types by multicategory support
vector machines using gene expression data. Bioinformatics, 19(9):1132, 2003.

[26] R.T. Cunningham, M.H. Mooney, X.L. Xia, S. Crooks, D. Matthews, M. OKeeffe,
K. Li, and C.T. Elliott. Feasibility of a clinical chemical analysis approach to predict
misuse of growth promoting hormones in cattle. Analytical Chemistry, 81(3):977–
983, 2009.

[27] C.W. Hsu, C.C. Chang, C.J. Lin, et al. A practical guide to support vector classifi-
cation, 2003. http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[28] K. Z. Mao. Fast orthogonal forward selection algorithm for feature subset selection.
IEEE Transactions on Neural Networks, 13(5):1218 – 1224, 2002.

14

